Non-singular multilinear forms and certain $p$-way matrix factorizations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple LU factorizations of a singular matrix

A singular matrix A may have more than one LU factorizations. In this work the set of all LU factorizations of A is explicitly described when the lower triangular matrix L is nonsingular. To this purpose, a canonical form of A under left multiplication by unit lower triangular matrices is introduced. This canonical form allows us to characterize the matrices that have an LU factorization and to...

متن کامل

Motivating Non - Negative Matrix Factorizations ∗

Given a vector space model encoding of a large data set, a usual starting point for data analysis is rank reduction [1]. However, standard rank reduction techniques such as the QR, Singular Value (SVD), and Semi-Discrete (SDD) decompositions and Principal Component Analysis (PCA) produce low rank bases which do not respect the non-negativity or structure of the original data. Non-negative Matri...

متن کامل

Multilinear forms which are products of linear forms

The conditions under which, multilinear forms (the symmetric case and the non symmetric case),can be written as a product of linear forms, are considered. Also we generalize a result due to S.Kurepa for 2n-functionals in a group G.

متن کامل

Multilinear forms

Proposition 1.1. α1, . . . , αn forms a basis for V ∗ (called the dual basis). In particular, this shows that V and V ∗ are vector spaces of the same dimension. However, there is no natural way to choose an isomorphism between them, unless we pick some additional structure on V (such as a basis or a nondegenerate bilinear form). On the other hand, we can construct an isomorphism ψ from V to (V ...

متن کامل

Pursuits in Structured Non-Convex Matrix Factorizations

Efficiently representing real world data in a succinct and parsimonious manner is of central importance in many fields. We present a generalized greedy pursuit framework, allowing us to efficiently solve structured matrix factorization problems, where the factors are allowed to be from arbitrary sets of structured vectors. Such structure may include sparsity, non-negativeness, order, or a combi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1936

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1936-1501856-7